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Overview

1 Monday: Context and Examples
2 Tuesday: Properties and Criteria (1)
3 Wednesday: Properties and Criteria (2)
4 Thursday: Algorithmic Proofs of Algebraicity
5 Friday: Transcendence in Lattice Path Combinatorics
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Part IV: Algorithmic Proofs of Algebraicity
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Overview

• Gessel walks: walks in N2 using only steps in S = {↗,↙,←,→}
• g(n; i, j) = number of walks from (0, 0) to (i, j) with n steps in S

Question: Find the nature of the generating function

G(t; x, y) =
∞

∑
i,j,n=0

g(n; i, j) xiyjtn ∈ Q[[x, y, t]]

Theorem (B.-Kauers 2010) G(t; x, y) is an algebraic function†.

→ Effective, computer-driven discovery and proof
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• g(n; i, j) = number of walks from (0, 0) to (i, j) with n steps in S

Question: Find the nature of the generating function

G(t; x, y) =
∞

∑
i,j,n=0

g(n; i, j) xiyjtn ∈ Q[[x, y, t]]

Theorem (B.-Kauers 2010) G(t; x, y) is an algebraic function†.

→ Effective, computer-driven discovery and proof

† Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has > 1011 terms; ≈ 30 Gb (!)
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First guess, then prove [Pólya, 1954]
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Personal bias: Experimental Mathematics using Computer Algebra
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Classification of univariate power series

algebraic

hypergeom

D-finite power series

. Algebraic: S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T], i.e., P
(
t, S(t)

)
= 0.

. D-finite: S(t) ∈ Q[[t]] satisfying a linear differential equation with
polynomial coefficients cr(t)S(r)(t) + · · ·+ c0(t)S(t) = 0.

. Hypergeometric: S(t) = ∑∞
n=0 sntn such that sn+1

sn
∈ Q(n). E.g.,

(a)n = a(a + 1) · · · (a + n− 1).
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Classification of multivariate power series

algebraic series

D-finite series

. S ∈ Q[[x, y, t]] is algebraic if it is the root of a polynomial P ∈ Q[x, y, t, T].

. S ∈ Q[[x, y, t]] is D-finite if it satisfies a system of linear partial differential
equations with polynomial coefficients

∑
i

ai(t, x, y)
∂iS
∂xi = 0, ∑

i
bi(t, x, y)

∂iS
∂yi = 0, ∑

i
ci(t, x, y)

∂iS
∂ti = 0.
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Gessel’s walks

S = {↗,↙,←,→}
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Gessel’s conjectures (≈ 2001)

G{↗,↙,←,→}

Conjecture 1 The generating function of Gessel excursions is equal to

G(t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)

=
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n

= 1 + 2t2 + 11t4 + 85t6 + 782t7 + · · ·

Conjecture 2
The full generating function G(t; x, y) is not D-finite.
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Genesis of Gessel’s questions – the “simple walk” in different cones

The simple walk in the plane

-

6 6
?
-�

[Pólya, 1921]:

. Formula (2n
n )

2
for 2n-excursions

. Rational generating function

The simple walk in the half-plane and in the quarter-plane
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. Formulas (2n+1
n )Cn, resp. CnCn+1, for 2n-excursions [Arquès, 1986]

. Full generating functions: algebraic [Bousquet-Mélou & Petkovšek, 2000],
resp. D-finite [Bousquet-Mélou, 2002]
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Genesis of Gessel’s questions – the “simple walk” in different cones

The simple walk in the cone with angle 45◦
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. Formula CnCn+2 − C2
n+1 for 2n-excursions [Gouyou-Beauchamps, 1986]

. D-finite generating function [Gessel & Zeilberger, 1992]

What about the simple walk in the cone with angle 135◦?
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A relative of Gessel walks: Kreweras walks

S = {↓,←,↗} FS(t; x, y) ≡ K(t; x, y)

S = {↗,↙,←,→} FS(t; x, y) ≡ G(t; x, y)
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Example: A Kreweras excursion.
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Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess candidates for minimal polynomials of FS(t; x, 0) and FS(t; 0, y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Algebraicity and transcendence of power series



14 / 39

Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess a candidate for the minimal polynomial of FS(t; x, y), using
Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Algebraicity and transcendence of power series



14 / 39

Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess candidates for minimal polynomials of FS(t; x, 0) and FS(t; 0, y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Algebraicity and transcendence of power series



14 / 39

Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess candidates for minimal polynomials of FS(t; x, 0) and FS(t; 0, y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

Alin Bostan Algebraicity and transcendence of power series



15 / 39

Step (S1): high order series expansions

fS(n; i, j) satisfies the recurrence with constant coefficients

fS(n + 1; i, j) = ∑
(u,v)∈S

fS(n; i− u, j− v) for n, i, j ≥ 0

+ initial conditions fS(0; i, j) = δ0,i,j and fS(n;−1, j) = fS(n; i,−1) = 0.

Example: for the Kreweras model,

k(n + 1; i, j) = k(n; i + 1, j)
+ k(n; i, j + 1)

+ k(n; i− 1, j− 1)

. Recurrence is used to compute FS(t; x, y) mod tN for large N.

K(t; x, y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·

Alin Bostan Algebraicity and transcendence of power series
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Step (S2): guessing equations for FS(t; x, y), a first idea

In terms of generating series, the recurrence on k(n; i, j) reads(
xy− (x + y + x2y2)t

)
K(t; x, y)

= xy− xt K(t; x, 0)− yt K(t; 0, y) (KerEq)

. A similar kernel equation holds for FS(t; x, y), for any S-walk.

Corollary. FS(t; x, y) is algebraic (resp. D-finite) if and only if FS(t; x, 0) and
FS(t; 0, y) are both algebraic (resp. D-finite).

. Crucial simplification: equations for G(t; x, y) are huge (≈ 30 Gb)
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Step (S2): guessing equations for FS(t; x, 0)& FS(t; 0, y)

Task 1: Given the first N terms of S = FS(t; x, 0) ∈ Q[x][[t]], search for a
differential equation satisfied by S at precision N:

cr(x, t) · ∂rS
∂tr + · · ·+ c1(x, t) · ∂S

∂t
+ c0(x, t) · S = 0 mod tN .

Task 2: Search for an algebraic equation Px,0(S) = 0 mod tN .

Both tasks amount to linear algebra in size N over Q(x).
In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

Fast (FFT-based) arithmetic in Fp[t].
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Step (S2): guessing equations for K(t; x, 0)

Using N = 80 terms of K(t; x, 0), one can guess

. a linear differential equation of order 4, degrees (14, 11) in (t, x), such that

t3 · (3t− 1) · (9t2 + 3t + 1) · (3t2 + 24t2x3 − 3xt− 2x2)·
· (16t2x5 + 4x4 − 72t4x3 − 18x3t + 5t2x2 + 18xt3 − 9t4)·

· (4t2x3 − t2 + 2xt− x2) · ∂4K(t; x, 0)
∂t4 + · · ·

= 0 mod t80

. a polynomial of tridegree (6, 10, 6) in (T, t, x)

Px,0 = x6t10T6 − 3x4t8(x− 2t)T5+

+ x2t6
(

12t2 + 3t2x3 − 12xt +
7
2

x2
)

T4 + · · ·

such that Px,0(K(t; x, 0), t, x) = 0 mod t80.
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Step (S2): guessing equations for G(t; x, 0) and G(t; 0, y)

Using N = 1200 terms of G(t; x, y), our guesser found candidates

Px,0 in Z[x, t, T] of degree (32, 43, 24), coefficients of 21 digits

P0,y in Z[y, t, T] of degree (40, 44, 24), coefficients of 23 digits

such that

Px,0(x, t, G(t; x, 0)) = P0,y(y, t, G(t; 0, y)) = 0 mod t1200.

. Guessing Px,0 by undetermined coefficients would have required to solve
a dense linear system of size ≈ 100 000, and ≈ 1000 digits entries!

. We actually first guessed differential equations†, then computed their
p-curvatures to empirically certify them. This led us suspect the algebraicity
of G(t; x, 0) and G(t; 0, y), using Grothendieck’s conjecture as an oracle.
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Guessing is good, proving is better [Pólya, 1957]
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Step (S3): warm-up – Gessel excursions are algebraic

Theorem. g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Such a P can be guessed from the first 100 terms of g(t).

2 Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.
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(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.
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Step (S3): warm-up – Gessel excursions are algebraic
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Step (S3): rigorous proof for Kreweras walks �
�@
?@
��

1 Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)
2tx2 = t + 1

x t2 + x3+1
x2 t3 + · · · in the

kernel equation

︸ ︷︷ ︸
!
= 0

(xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; 0, y)

shows that U = K(t; x, 0) satisfies the reduced kernel equation

0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0) (RKerEq)

2 U = K(t; x, 0) is the unique solution in Q[[x, t]] of (RKerEq).

3 The guessed candidate Px,0 has one solution H(t, x) in Q[[x, t]].

4 Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5 Uniqueness: H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!
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Algebraicity of Kreweras walks: a computer proof in a nutshell
[bostan@inria ~]$ maple

|\^/| Maple 19 (APPLE UNIVERSAL OSX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2014
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.

# HIGH ORDER EXPANSION (S1)
> st,bu:=time(),kernelopts(bytesused):
> f:=proc(n,i,j)

option remember;
if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi

end:
> S:=series(add(add(f(k,i,0)*x^i,i=0..k)*t^k,k=0..80),t,80):

# GUESSING (S2)
> libname:=".",libname:gfun:-version();

3.62
> gfun:-seriestoalgeq(S,Fx(t)):
> P:=collect(numer(subs(Fx(t)=T,%[1])),T):

# RIGOROUS PROOF (S3)
> ker := (T,t,x) -> (x+T+x^2*T^2)*t-x*T:
> pol := unapply(P,T,t,x):
> p1 := resultant(pol(z-T,t,x),ker(t*z,t,x),z):
> p2 := subs(T=x*T,resultant(numer(pol(T/z,t,z)),ker(z,t,x),z)):
> normal(primpart(p1,T)/primpart(p2,T));

1

# time (in sec) and memory consumption (in Mb)
> trunc(time()-st),trunc((kernelopts(bytesused)-bu)/1000^2);

7, 617
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Step (S3): rigorous proof for Gessel walks �	
�@
@
-��

Same strategy, but several complications:
stepset diagonal symmetry is lost: G(t; x, y) 6= G(t; y, x);
G(t; 0, 0) occurs in (KerEq) (because of the step↙);
equations are ≈ 5 000 times bigger.

−→ replace equation (RKerEq) by a system of 2 reduced kernel equations.

−→ fast algorithms needed (e.g., [B., Flajolet, Salvy & Schost 2006] for
computations with algebraic series).
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Summary

, Guess’n’Prove is a powerful method, especially when combined with
efficient computer algebra

, It is robust: it can be used to uniformly prove algebraicity

, Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x, y) ≈ 30 Gb.
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INSIDE THE BOX

–Hermite-Padé approximants–
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Definition

Definition: Given a column vector F = ( f1, . . . , fn)T ∈ Q[[x]]n and an n-tuple
d = (d1, . . . , dn) ∈Nn, a Hermite-Padé approximant of type d for F is a row
vector P = (P1, . . . , Pn) ∈ Q[x]n, (P 6= 0), such that:

(1) P · F = P1 f1 + · · ·+ Pn fn = O(xσ) with σ = ∑i(di + 1)− 1,

(2) deg(Pi) ≤ di for all i.

σ is called the order of the approximant P.

. Very useful concept in number theory (irrationality/transcendence):

[Hermite 1873]: e is transcendent.

[Lindemann 1882]: π is transcendent; so does eα for any α ∈ Q \ {0}.
[Apéry 1978, Beukers 1981]: ζ(3) = ∑n≥1

1
n3 is irrational.

[Rivoal 2000]: there exist infinite values of k such that ζ(2k + 1) /∈ Q.
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Worked example

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for (1, C, C2),
where C(x) = 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + O(x6).
This boils down to finding α0, α1, β0, β1, γ0, γ1 (not all zero) such that

α0+α1x+(β0 + β1x)(1+ x+ 2x2 + 5x3 + 14x4)+(γ0 +γ1x)(1+ 2x+ 5x2 + 14x3 + 42x4)=O(x5)

Identifying coefficients, this is equivalent to a homogeneous linear system:
1 0 1 0 1 0
0 1 1 1 2 1
0 0 2 1 5 2
0 0 5 2 14 5
0 0 14 5 42 14

×


α0
α1
β0
β1
γ0
γ1

 = 0⇐⇒


1 0 1 0 1
0 1 1 1 2
0 0 2 1 5
0 0 5 2 14
0 0 14 5 42

×


α0
α1
β0
β1
γ0

 = −γ1


0
1
2
5

14

 .

By homogeneity, one can choose γ1 = 1.
Then, the violet minor shows that one can take (β0, β1, γ0) = (−1, 0, 0).
The other values are α0 = 1, α1 = 0.

Thus the approximant is (1,−1, x), which corresponds to P = 1− y + xy2

such that P(x, C(x)) = 0 mod x5.

Alin Bostan Algebraicity and transcendence of power series



29 / 39

Algebraic and differential approximation = guessing

Hermite-Padé approximants of n = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

algebraic approximants = Hermite-Padé approximants for f` = A`−1,
where A ∈ Q[[x]] seriestoalgeq, listtoalgeq
differential approximants = Hermite-Padé approximants for f` = A(`−1),
where A ∈ Q[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));
2

[1 - y(x) + x y(x) , ogf]

> listtodiffeq([1,1,2,5,14,42,132,429],y(x));
/ 2 \

/d \ |d |
[{-2 y(x) + (2 - 4 x) |-- y(x)| + x |--- y(x)|, y(0) = 1, D(y)(0) = 1}, egf]

\dx / | 2 |
\dx /
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Existence and naive computation

Theorem For any vector F = ( f1, . . . , fn)T ∈ Q[[x]]n and for any n-tuple
d = (d1, . . . , dn) ∈Nn, there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of Pi = ∑di
j=0 pi,jxj satisfy a linear

homogeneous system with σ = ∑i(di + 1)− 1 eqs and σ + 1 unknowns.

Corollary Computation in O(σω), for 2 ≤ ω ≤ 3 (linear algebra exponent)

. There are better algorithms (the linear system is structured, Sylvester-like):

Derksen’s algorithm (Gaussian-like elimination) O(σ2)

Beckermann-Labahn’s algorithm (DAC) Õ(σ) = O(σ log2 σ)
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Quasi-optimal computation

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d, . . . , d) for F = ( f1, . . . , fn) in Õ(nωd) ops. in Q

Ideas:
Compute a whole matrix of approximants

Exploit divide-and-conquer

Algorithm:

1 If σ = n(d + 1)− 1 ≤ threshold, call the naive algorithm
2 Else:

1 recursively compute P1 ∈ Q[x]n×n s.t. P1 · F = O(xσ/2), deg(P1) ≈ d
2

2 compute “residue” R such that P1 · F = xσ/2 ·
(
R + O(xσ/2)

)
3 recursively compute P2 ∈ Q[x]n×n s.t. P2 · R = O(xσ/2), deg(P2) ≈ d

2
4 return P := P2 · P1

. The precise choices of degrees is a delicate issue

. Corollary: Gcd, extended gcd, Padé approximants in Õ(d)
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INSIDE THE BOX

–Special resultants–
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Conversion coefficients↔ power sums [Schönhage, 1982]

Any polynomial F = xn + a1xn−1 + · · ·+ an in Q[x] can be represented by
its first n power sums Si = ∑

F(α)=0
αi

Conversions coefficients ↔ power sums can be performed

• either in O(n2) using Newton identities (naive way):

iai + S1ai−1 + · · ·+ Si = 0, 1 ≤ i ≤ n

• or in Õ(n) using generating series

rev(F)′

rev(F)
= −∑

i≥0
Si+1xi ⇐⇒ rev(F) = exp

(
−∑

i≥1

Si
i

xi

)
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Special bivariate resultants [B., Flajolet, Salvy, Schost, 2006]

Manipulation of algebraic numbers: composed products and sums

F⊗ G = ∏
F(α)=0,G(β)=0

(x− αβ), F⊕ G = ∏
F(α)=0,G(β)=0

(x− (α + β))

Output size: N = deg(F)deg(G)

Linear algebra: χxy, χx+y in Q[x, y]/(F(x), G(y)) O(Nω)

Resultants: Resy

(
F(y), ydeg(G)G(x/y)

)
, Resy (F(y), G(x− y)) O(N2)

Better: ⊗ and ⊕ are easy in Newton representation Õ(N)

∑ αs ∑ βs =∑(αβ)s and

∑ ∑(α + β)s

s!
xs =

(
∑ ∑ αs

s!
xs
)(

∑ ∑ βs

s!
xs
)
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Newton’s tangent method: real case [Newton, 1671]

xκ+1 = N (xκ) = xκ − (x2
κ − 2)/(2xκ), x0 = 1

x1 = 1.5000000000000000000000000000000

x2 = 1.4166666666666666666666666666667

x3 = 1.4142156862745098039215686274510

x4 = 1.4142135623746899106262955788901

x5 = 1.4142135623730950488016896235025
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Newton’s tangent method: power series case

In order to solve ϕ(x, g) = 0 in Q[[x]] iterate

gκ+1 = gκ −
ϕ(gκ)

ϕy(gκ)
mod x2κ+1

. The number of correct coefficients doubles after each iteration

. Total cost = 2 ×
(

the cost of the last iteration
)

Theorem [Cook 1966, Sieveking 1972 & Kung 1974, Brent 1975]
Division, logarithm and exponential of power series in Q[[x]] can be
computed at precision N using Õ(N) operations in Q
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In practice
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End of Part IV

Thanks for your attention!
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